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BITX40 / µBITX – What are they?

● QRP transceiver kits from India

– by Ashhar Farhan (VU2ESE)
● Kit includes:

– Main circuit board already assembled (including toroids)

– Raduino (custom board)
● Arduino Nano
● Si5351 CMOS clock generator (up to 160 MHz)

– 16x2 LCD display

– Wiring harnesses, connectors, potentiometers, hardware, etc.
● User supplies the enclosure

● Shipped in 1 week from India via DHL ($10 extra)



  

BITX40 / µBITX – How do they compare?

● BITX40

– Single band 40m 

– 6.5-7.0 watts @13.8V

– One IRF510

– 16x2 LCD

– Si5351

– Potentiometer tuning

– PTT directly to board

– 12 MHz IF, 
Si5351 @5MHz

– Separate PA power rail

– Primitive MIC

● µBITX

– Multi-band 80m-10m

– Up to 10 watts @13.8V

– Two IRF510s (push pull)

– 16x2 LCD

– Si5351

– Rotary encoder tuning

– PTT goes to Arduino

– 1st IF upconvert to 45MHz 
2nd IF downconvert to 12MHz

– Separate PA power rail

– Primitive MIC



  

BITX40 Circuit Boards



  

BITX40 /  µBITX Features

● Inexpensive kits:

– BITX40: $69 includes DHL shipping from India

– µBITX: $119 (also includes shipping)
● Schematics are freely available 

● Arduino program (sketch) is Free Software GPL v3

● Very active(!) community on the internet

● Many software and hardware mods are available

– Different sketches available for stock rig

– Custom sketches to match custom mods also available



  

Arduino Nano

● Open Source Hardware (Creative Commons)

● Microcontroller:  ATmega328

● 5Vdc, 19mA, 16MHz

● Programmable using Arduino IDE and available libraries

● Arduino IDE runs on multiple operating systems

● 32KB FLASH memory

– (2KB bootloader, 30KB available to user for program)
● 1KB EEPROM, 2KB SRAM

● Leftover pins for the user:

– BITX40: 6 digital, 5 analog

– µBITX: 0 digital, 1 analog



  

Si5351

● CMOS clock generator

– 3 clock outputs (only 1 used in BITX40)
● I2C device

– 2 pin serial protocol, serial clock, serial data
● Generates frequencies up to 160MHz (0 ppm error)

● Glitchless frequency changes

● Ideally suited for replacing crystals, crystal oscillators, 
VCXOs (voltage controlled crystal oscillators)



  

Building the BITX40 / µBITX

● Obtain a suitable enclosure

● Drill holes and cut opening for LCD display

● Other enclosure machining as needed

● Mount all of the parts in the enclosure

● Software is already loaded into the Arduino



  

BITX40 Wiring Diagram



  

BITX40 internals by KB1OIQ



  

BITX40 Enclosure by KB1OIQ

● External speaker from
NEAR-Fest

● ICOM mic

● Awesome knobs from elmer’s 
junk box

● Metal enclosure

● Brushed metal look from green 
kitchen scrubbing pad

● Homebrew tie wrap bezel



  

Prepare for first power-on

● Connect 12Vdc (13.8Vdc is OK)

● Use a 2 amp fuse!

● Connect the antenna cable (or dummy load) to the BNC connector.

● Plug in an external speaker

– Don't use headphones!

– It is much too loud and variable!  No AGC(!)
● Connect microphone

● Throw the switch!  Hear the speaker pop...good sign!

● Sniff for smoke.....

● Watch the LCD display, with the original sketch:

– It should say “Raduino”, then display the frequency



  

First QSO

● Called my elmer: Steve (W1KBE)

● Transmitting 6.5 watts 40m LSB phone

● First record QSO:  0.215 miles / watt !

● It works!!!

● Fast forward many days/months:

– Best DX so far: Croatia, about 4000 miles



  

BITX40 Hacks Done by Others

● Implement USB for digital modes

● Bend the circuitry and software to allow for CW use

● Several options for the following:

– AGC circuit

– RF gain circuit
● PA rail is intentionally separate from 12V rail

– Bigger IRF510 heat sink and 24V at PA

– 17 – 20 watts output on LSB
● Replace tuning potentiometer with a rotary encoder



  

KB1OIQ BITX40 Modifications

● Tuning algorithm modifications

● ICOM MIC connector

● RF Gain circuit

● Keypad

● Dual VFOs

● Save rig parameters in EEPROM

● Fine tuning potentiometer

● Added USB (for digital modes)

● Voice synthesis via Talkie library



  

BITX40: Tuning Behavior

● Tuning via 10K ohm potentiometer between +5V and GND

● Wiper is connected to Arduino analog input

● Arduino ADC converts voltage to integer 0<=N<=1023

● To reduce tuning sensitivity, full range of the tuning knob is 
50kHz.  Minimum tuning is 100Hz (controlled in SW).

● HOWTO get to another 50kHz section of the band?

● Tuning knob extremes intentionally cause frequency to 
jump in large increments.

– There is no warning that this will happen.

– Many found this behavior undesirable.



  

BITX40: Tuning Modification

● Sketch changes:

– Change sketch to tune only a 20kHz region

– Remove “jump” feature at potentiometer edges

● Implement MIC modification (described next)

– Use UP and DN buttons to jump to other 20 kHz regions

● Tuning granularity is still 100 Hz

– Fixed later with Fine Tuning mod



  

MIC modification

● Wire MIC to BITX40 main board

● Connect UP/DN to an unused Arduino analog pin

– UP: GND, DN: thru 470 ohms, 4.7K pullup to +5V
● BITX40:

– Potentiometer range: changed to 20kHz

– To get to the next 20kHz region, use UP or DN button

– Remedies the “galloping VFO” problem
● µBITX: haven’t done this mod yet, but shortly...

– Not sure what to do with UP/DN buttons

– Uses rotary encoder for tuning



  

MIC connector pinout



  

Wiring Diagram



  

BITX40: RF Gain mod

● This receiver has A LOT of gain

– S9+ signal overloads the receiver and distorts the audio
● Elmer recommended a circuit straight from EMRFD

– Experimental Methods in RF Design, by ARRL

– Mod based on: Revised 1st Edition
Page 6.16, Figure 6.41

● I chose to remove R11 and add circuit to R11 pads

● No sketch mod is needed, this is just an analog circuit



  

Mod: RF Gain



  

BITX40 / µBITX: Add a Keypad

● Resistive keypad

● Single output, different voltage for each key

● Connect it to an Arduino analog input

● Modify sketch to decode keypad

● Requires: +5V, GND, and keypad output

– Used a stereo headphone jack
● Warning: don't insert/remove plug when powered!
● I'm glad I use fuses!

– Looking at different connector type for µBITX
● Connect “signal” to unused Arduino analog pin



  

Decoding the Keypad
● byte key = decode_keypad(analogRead(KEYPAD));

● int decode_keypad(int tmp) {

●   int key = 999;  // error value, 0 means no key pressed, or keypad not present

●   

●   if (((tmp >= 0) && (tmp <= 20)) || ((tmp > 520) && (tmp <= 1023))) { key = 0; } else {    

●     if ((tmp > 465) && (tmp < 495)) { key = 1; } else

●     if ((tmp > 420) && (tmp < 450)) { key = 2; } else 

●     if ((tmp > 380) && (tmp < 410)) { key = 3; } else

●    <snip>

●     if ((tmp >  65) && (tmp <  95)) { key = 11;} else 

●     if ((tmp >  25) && (tmp <  55)) { key = 12;} else key = 999;

●   }

●   return key;

● }



  

SW Mod: VFOs

● VFOs

– Just another memory location holding a frequency

– SW mod plus a keypad button to activate the function
● Two VFOs: vfoA and vfoB

● Set active VFO – toggle between vfoA and vfoB

● Swap VFOs – trade contents between vfoA and vfoB

● Make VFOs equal (both equal to active VFO)

● Note to self: carry mode with VFO, not just frequency



  

SW Mod: Save/restore rig parameters

● EEPROM is accessible inside of the Arduino

● Use keypad button to save rig parameters

● On power up, rig parameters are restored

● What is saved:

– Active VFO (A or B)

– vfoA and vfoB frequency range (add mode, too)

– Calibration values
●  May add more to this in the future.



  

Fine Tuning Mod

● Normal tuning granularity is 100 Hz

– Fine tuning granularity is 1 Hz

– Range -255 Hz → +256 Hz

– Improves intelligibility of SSB signal
● Very simple circuit (see next slide)

● Requires sketch modification to read value and adjust 
frequency



  

Mod: Fine Tuning Circuit



  

BITX40: USB Mode

● Desire to do digital modes with BITX40

● SW: 

– Keep track of USB/LSB mode

– Modify set_frequency()

– BFO frequency constant around 12 MHz

– VFO frequency set to 5 MHz or 19 MHz
● HW:

– Remove C91 and C92 (or USB power is only 1W)

– Build a custom cable between RigBlaster Plug ‘n Play
and mic jack



  

Voice Synthesis

● Might this be useful to visually impaired hams?

– 3 people have expressed interest
● BITX40

– Used software Talkie library

– Very limited vocabulary, proof of concept

– Triggered by keypad
● µBITX

– using Emic2 text-to-speech hardware module

– MUCH better voice quality and vocabulary
● Audio mixer board (or two speakers)

– To mix voice sounds with “radio sounds” in one speaker



  

BITX40: Modifications Considered

● AGC circuit

– Audio: haven’t found a good circuit

– RF: ?
● Split mode

– Need to send PTT to Arduino, then drive PTT on board

– Nope, but PTT in uBITX is different...
● Simple rig control via hamlib

– Nope, not enough code space



  

Questions about BITX40?

● Answer questions

● Moving on to µBITX



  

KB1OIQ’s µBITX Prototype



  

KB1OIQ’s µBITX Prototype

● 12”x12” copper clad circuit board

● Rear panel jacks

– Antenna, 12V, speaker, key/paddle
● Emic2

● On/off/volume, rotary encoder

● Keypad

● White box: amplified speaker (temporary)

● Someday, this will be in a proper enclosure

– Need to see what has to go in there...



  

µBITX mods by KB1OIQ (so far)

● Major surgery on the sketch

– Refactored everything into C++ classes
● Saved most of Farhan’s original sketch

– Memory is a scarce resource!  Use it wisely!
● put all text strings in PROGMEM
● byte (1 byte) vs. int (2 bytes) vs. long (4 bytes)
● don’t copy/paste code, use classes!

– Reimplemented the menu system
● Converted LCD to I2C (recovered 6 digital pins!)

● Added Emic2, separate audio output (used 2 digital pins)

● Added keypad (used remaining analog pin)



  

µBITX: What works today for KB1OIQ?

● Everything printed to LCD is also spoken by Emic2

● Menus rewritten with C++ class library (MenuSystem)

– CW Menu: key, paddle, sideTone, keyer speed, etc.

– Tuning Menu: lsb/usb/cw, RIT(nyi), select VFO A/B

– Voice Menu: choose voice, talking speed, volume
● Keypad: 

– help, menu mode, direct frequency input

– modes, VFOs (saved in EEPROM), speak on demand
● CW: key and paddle (left or right handed)

● Won’t transmit out of band, CW key disabled in LSB/USB

● Fine grain tuning by 1Hz by pressing rotary encoder button



  

KB1OIQ µBITX: Future Tasks

● Need to do:

– RF gain

– Anti-pop for speaker during RX→TX or TX→RX transition

– AGC

– MIC connector and UP/DN buttons

– Remove RIT from the sketch (fine tuning fixes this)

– Add Split mode between VFOs

– Suitable enclosure

– Audio mixer or 2 separate speakers?

– Consider putting CAT code back into the sketch
● Very much a work in progress!  Lots of FUN!



  

Summary (next to last slide)

● BITX40 / µBITX are FUN kits !

● HW and SW are freely documented and easily available

● Active user community on the internet
(groups.io and Facebook)

● Hacking the HW and/or SW are encouraged!

● Cost:  very reasonable

● KB1OIQ mods are available on Sourceforge:

– Search for KB1OIQ ham-radio-projects
– https://sourceforge.net/projects/kb1oiq-ham-radio-projects/files

– Look in the bitx40 and ubitx subdirectories

– Photos, videos, detailed docs for mods, source code

https://sourceforge.net/projects/kb1oiq-ham-radio-projects/files


  

Last slide

● I hope you enjoyed this talk – thank you for attending!

● Email:  kb1oiq@arrl.net



  

References

● Main website: http://www.hfsigs.com

● Discussion group: https://groups.io/g/BITX20

● Useful Hacks:  

– http://bitxhacks.blogspot.com

– http://ubitx.net/
● Designer:  Ashhar Farhan (VU2ESE), thank you!!

● Arduino Nano: 
https://www.arduino.cc/en/Main/arduinoBoardNano

● SI5351B: 
https://cdn-shop.adafruit.com/datasheets/Si5351.pdf

http://www.hfsigs.com/
https://groups.io/g/BITX20
http://bitxhacks.blogspot.com/
http://ubitx.net/
https://qrz.com/db/vu2ese
https://www.arduino.cc/en/Main/arduinoBoardNano
https://cdn-shop.adafruit.com/datasheets/Si5351.pdf
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