

BITX40 / µBITX Transceiver Kits

Andy Stewart
KB1OIQ

March 15, 2018

Presented to the
Nashoba Valley Amateur Radio Club

Pepperell, MA

BITX40 / µBITX – What are they?

● QRP transceiver kits from India

– by Ashhar Farhan (VU2ESE)
● Kit includes:

– Main circuit board already assembled (including toroids)

– Raduino (custom board)
● Arduino Nano
● Si5351 CMOS clock generator (up to 160 MHz)

– 16x2 LCD display

– Wiring harnesses, connectors, potentiometers, hardware, etc.
● User supplies the enclosure

● Shipped in 1 week from India via DHL ($10 extra)

BITX40 / µBITX – How do they compare?

● BITX40

– Single band 40m

– 6.5-7.0 watts @13.8V

– One IRF510

– 16x2 LCD

– Si5351

– Potentiometer tuning

– PTT directly to board

– 12 MHz IF,
Si5351 @5MHz

– Separate PA power rail

– Primitive MIC

● µBITX

– Multi-band 80m-10m

– Up to 10 watts @13.8V

– Two IRF510s (push pull)

– 16x2 LCD

– Si5351

– Rotary encoder tuning

– PTT goes to Arduino

– 1st IF upconvert to 45MHz
2nd IF downconvert to 12MHz

– Separate PA power rail

– Primitive MIC

BITX40 Circuit Boards

BITX40 / µBITX Features

● Inexpensive kits:

– BITX40: $69 includes DHL shipping from India

– µBITX: $119 (also includes shipping)
● Schematics are freely available

● Arduino program (sketch) is Free Software GPL v3

● Very active(!) community on the internet

● Many software and hardware mods are available

– Different sketches available for stock rig

– Custom sketches to match custom mods also available

Arduino Nano

● Open Source Hardware (Creative Commons)

● Microcontroller: ATmega328

● 5Vdc, 19mA, 16MHz

● Programmable using Arduino IDE and available libraries

● Arduino IDE runs on multiple operating systems

● 32KB FLASH memory

– (2KB bootloader, 30KB available to user for program)
● 1KB EEPROM, 2KB SRAM

● Leftover pins for the user:

– BITX40: 6 digital, 5 analog

– µBITX: 0 digital, 1 analog

Si5351

● CMOS clock generator

– 3 clock outputs (only 1 used in BITX40)
● I2C device

– 2 pin serial protocol, serial clock, serial data
● Generates frequencies up to 160MHz (0 ppm error)

● Glitchless frequency changes

● Ideally suited for replacing crystals, crystal oscillators,
VCXOs (voltage controlled crystal oscillators)

Building the BITX40 / µBITX

● Obtain a suitable enclosure

● Drill holes and cut opening for LCD display

● Other enclosure machining as needed

● Mount all of the parts in the enclosure

● Software is already loaded into the Arduino

BITX40 Wiring Diagram

BITX40 internals by KB1OIQ

BITX40 Enclosure by KB1OIQ

● External speaker from
NEAR-Fest

● ICOM mic

● Awesome knobs from elmer’s
junk box

● Metal enclosure

● Brushed metal look from green
kitchen scrubbing pad

● Homebrew tie wrap bezel

Prepare for first power-on

● Connect 12Vdc (13.8Vdc is OK)

● Use a 2 amp fuse!

● Connect the antenna cable (or dummy load) to the BNC connector.

● Plug in an external speaker

– Don't use headphones!

– It is much too loud and variable! No AGC(!)
● Connect microphone

● Throw the switch! Hear the speaker pop...good sign!

● Sniff for smoke.....

● Watch the LCD display, with the original sketch:

– It should say “Raduino”, then display the frequency

First QSO

● Called my elmer: Steve (W1KBE)

● Transmitting 6.5 watts 40m LSB phone

● First record QSO: 0.215 miles / watt !

● It works!!!

● Fast forward many days/months:

– Best DX so far: Croatia, about 4000 miles

BITX40 Hacks Done by Others

● Implement USB for digital modes

● Bend the circuitry and software to allow for CW use

● Several options for the following:

– AGC circuit

– RF gain circuit
● PA rail is intentionally separate from 12V rail

– Bigger IRF510 heat sink and 24V at PA

– 17 – 20 watts output on LSB
● Replace tuning potentiometer with a rotary encoder

KB1OIQ BITX40 Modifications

● Tuning algorithm modifications

● ICOM MIC connector

● RF Gain circuit

● Keypad

● Dual VFOs

● Save rig parameters in EEPROM

● Fine tuning potentiometer

● Added USB (for digital modes)

● Voice synthesis via Talkie library

BITX40: Tuning Behavior

● Tuning via 10K ohm potentiometer between +5V and GND

● Wiper is connected to Arduino analog input

● Arduino ADC converts voltage to integer 0<=N<=1023

● To reduce tuning sensitivity, full range of the tuning knob is
50kHz. Minimum tuning is 100Hz (controlled in SW).

● HOWTO get to another 50kHz section of the band?

● Tuning knob extremes intentionally cause frequency to
jump in large increments.

– There is no warning that this will happen.

– Many found this behavior undesirable.

BITX40: Tuning Modification

● Sketch changes:

– Change sketch to tune only a 20kHz region

– Remove “jump” feature at potentiometer edges

● Implement MIC modification (described next)

– Use UP and DN buttons to jump to other 20 kHz regions

● Tuning granularity is still 100 Hz

– Fixed later with Fine Tuning mod

MIC modification

● Wire MIC to BITX40 main board

● Connect UP/DN to an unused Arduino analog pin

– UP: GND, DN: thru 470 ohms, 4.7K pullup to +5V
● BITX40:

– Potentiometer range: changed to 20kHz

– To get to the next 20kHz region, use UP or DN button

– Remedies the “galloping VFO” problem
● µBITX: haven’t done this mod yet, but shortly...

– Not sure what to do with UP/DN buttons

– Uses rotary encoder for tuning

MIC connector pinout

Wiring Diagram

BITX40: RF Gain mod

● This receiver has A LOT of gain

– S9+ signal overloads the receiver and distorts the audio
● Elmer recommended a circuit straight from EMRFD

– Experimental Methods in RF Design, by ARRL

– Mod based on: Revised 1st Edition
Page 6.16, Figure 6.41

● I chose to remove R11 and add circuit to R11 pads

● No sketch mod is needed, this is just an analog circuit

Mod: RF Gain

BITX40 / µBITX: Add a Keypad

● Resistive keypad

● Single output, different voltage for each key

● Connect it to an Arduino analog input

● Modify sketch to decode keypad

● Requires: +5V, GND, and keypad output

– Used a stereo headphone jack
● Warning: don't insert/remove plug when powered!
● I'm glad I use fuses!

– Looking at different connector type for µBITX
● Connect “signal” to unused Arduino analog pin

Decoding the Keypad
● byte key = decode_keypad(analogRead(KEYPAD));

● int decode_keypad(int tmp) {

● int key = 999; // error value, 0 means no key pressed, or keypad not present

●

● if (((tmp >= 0) && (tmp <= 20)) || ((tmp > 520) && (tmp <= 1023))) { key = 0; } else {

● if ((tmp > 465) && (tmp < 495)) { key = 1; } else

● if ((tmp > 420) && (tmp < 450)) { key = 2; } else

● if ((tmp > 380) && (tmp < 410)) { key = 3; } else

● <snip>

● if ((tmp > 65) && (tmp < 95)) { key = 11;} else

● if ((tmp > 25) && (tmp < 55)) { key = 12;} else key = 999;

● }

● return key;

● }

SW Mod: VFOs

● VFOs

– Just another memory location holding a frequency

– SW mod plus a keypad button to activate the function
● Two VFOs: vfoA and vfoB

● Set active VFO – toggle between vfoA and vfoB

● Swap VFOs – trade contents between vfoA and vfoB

● Make VFOs equal (both equal to active VFO)

● Note to self: carry mode with VFO, not just frequency

SW Mod: Save/restore rig parameters

● EEPROM is accessible inside of the Arduino

● Use keypad button to save rig parameters

● On power up, rig parameters are restored

● What is saved:

– Active VFO (A or B)

– vfoA and vfoB frequency range (add mode, too)

– Calibration values
● May add more to this in the future.

Fine Tuning Mod

● Normal tuning granularity is 100 Hz

– Fine tuning granularity is 1 Hz

– Range -255 Hz → +256 Hz

– Improves intelligibility of SSB signal
● Very simple circuit (see next slide)

● Requires sketch modification to read value and adjust
frequency

Mod: Fine Tuning Circuit

BITX40: USB Mode

● Desire to do digital modes with BITX40

● SW:

– Keep track of USB/LSB mode

– Modify set_frequency()

– BFO frequency constant around 12 MHz

– VFO frequency set to 5 MHz or 19 MHz
● HW:

– Remove C91 and C92 (or USB power is only 1W)

– Build a custom cable between RigBlaster Plug ‘n Play
and mic jack

Voice Synthesis

● Might this be useful to visually impaired hams?

– 3 people have expressed interest
● BITX40

– Used software Talkie library

– Very limited vocabulary, proof of concept

– Triggered by keypad
● µBITX

– using Emic2 text-to-speech hardware module

– MUCH better voice quality and vocabulary
● Audio mixer board (or two speakers)

– To mix voice sounds with “radio sounds” in one speaker

BITX40: Modifications Considered

● AGC circuit

– Audio: haven’t found a good circuit

– RF: ?
● Split mode

– Need to send PTT to Arduino, then drive PTT on board

– Nope, but PTT in uBITX is different...
● Simple rig control via hamlib

– Nope, not enough code space

Questions about BITX40?

● Answer questions

● Moving on to µBITX

KB1OIQ’s µBITX Prototype

KB1OIQ’s µBITX Prototype

● 12”x12” copper clad circuit board

● Rear panel jacks

– Antenna, 12V, speaker, key/paddle
● Emic2

● On/off/volume, rotary encoder

● Keypad

● White box: amplified speaker (temporary)

● Someday, this will be in a proper enclosure

– Need to see what has to go in there...

µBITX mods by KB1OIQ (so far)

● Major surgery on the sketch

– Refactored everything into C++ classes
● Saved most of Farhan’s original sketch

– Memory is a scarce resource! Use it wisely!
● put all text strings in PROGMEM
● byte (1 byte) vs. int (2 bytes) vs. long (4 bytes)
● don’t copy/paste code, use classes!

– Reimplemented the menu system
● Converted LCD to I2C (recovered 6 digital pins!)

● Added Emic2, separate audio output (used 2 digital pins)

● Added keypad (used remaining analog pin)

µBITX: What works today for KB1OIQ?

● Everything printed to LCD is also spoken by Emic2

● Menus rewritten with C++ class library (MenuSystem)

– CW Menu: key, paddle, sideTone, keyer speed, etc.

– Tuning Menu: lsb/usb/cw, RIT(nyi), select VFO A/B

– Voice Menu: choose voice, talking speed, volume
● Keypad:

– help, menu mode, direct frequency input

– modes, VFOs (saved in EEPROM), speak on demand
● CW: key and paddle (left or right handed)

● Won’t transmit out of band, CW key disabled in LSB/USB

● Fine grain tuning by 1Hz by pressing rotary encoder button

KB1OIQ µBITX: Future Tasks

● Need to do:

– RF gain

– Anti-pop for speaker during RX→TX or TX→RX transition

– AGC

– MIC connector and UP/DN buttons

– Remove RIT from the sketch (fine tuning fixes this)

– Add Split mode between VFOs

– Suitable enclosure

– Audio mixer or 2 separate speakers?

– Consider putting CAT code back into the sketch
● Very much a work in progress! Lots of FUN!

Summary (next to last slide)

● BITX40 / µBITX are FUN kits !

● HW and SW are freely documented and easily available

● Active user community on the internet
(groups.io and Facebook)

● Hacking the HW and/or SW are encouraged!

● Cost: very reasonable

● KB1OIQ mods are available on Sourceforge:

– Search for KB1OIQ ham-radio-projects
– https://sourceforge.net/projects/kb1oiq-ham-radio-projects/files

– Look in the bitx40 and ubitx subdirectories

– Photos, videos, detailed docs for mods, source code

https://sourceforge.net/projects/kb1oiq-ham-radio-projects/files

Last slide

● I hope you enjoyed this talk – thank you for attending!

● Email: kb1oiq@arrl.net

References

● Main website: http://www.hfsigs.com

● Discussion group: https://groups.io/g/BITX20

● Useful Hacks:

– http://bitxhacks.blogspot.com

– http://ubitx.net/
● Designer: Ashhar Farhan (VU2ESE), thank you!!

● Arduino Nano:
https://www.arduino.cc/en/Main/arduinoBoardNano

● SI5351B:
https://cdn-shop.adafruit.com/datasheets/Si5351.pdf

http://www.hfsigs.com/
https://groups.io/g/BITX20
http://bitxhacks.blogspot.com/
http://ubitx.net/
https://qrz.com/db/vu2ese
https://www.arduino.cc/en/Main/arduinoBoardNano
https://cdn-shop.adafruit.com/datasheets/Si5351.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

