RF Crimp Connectors and Assembly

W0TLM Amateur Radio Club Tech Field Day

Mike Hoskins, WØMJH 6/24/2017

Michael Hoskins, WØMJH Presenter Background

- BSEE 1978, MSEE 1980, Ph.D EE 1983, University of Ill, Champaign/Urbana.
- 39 yrs experience working as an electrical engineer in RF and uWave integrated circuit development and design
- Currently with Analog Devices Inc. developing ultra-wideband microwave sampler and amplifier integrated circuits for high speed A/D and D/A converters (DC - 40GHz)
- Involved in emergency preparation for the home for ~5 yrs
- Relatively new to ham radio: amateur extra license received
 April 2014

Presentation Outline

- Cable and Connector Selection Tips
- Basic Types of RF Connector Assembly Types
- Crimp vs. Solder Connectors: the Great Controversy
 - My Personal View
 - Advantages/Disadvantages of Crimp Connectors
- Useful Cable Assembly Tools to Make the Job Easier
 - Critical Importance of the Crimping Tool and Die Quality
- RF Crimp Connector Assembly Sequence

Cable and Connector Selection Tips (1)

- Recommend choosing the cable first
 - Connectors are made for specific cable types/sizes
 - Long runs require low attenuation: large cable diameter
 - Short runs (like inside the shack) benefit from flexibility: can tolerate added attenuation of smaller cable diameter
 - Typical key cable selection criteria:
 - Environmental conditions (e.g. underground or inside house)
 - Attenuation for frequency range of interest
 - Flexibility/routability
 - Quality of shielding

Cable and Connector Selection Tips (2)

- Life will be much easier if you can standardize on just a few cables/connector combinations
- Example: what I'm using at the W0MJH household
 - Long runs antenna to house grounding panel, underground runs, etc
 - Davis Bury Flex Underground Cable –LMR400 type with OD=0.405"
 - Short runs outside panel to inside shack, inter-equipment inside shack
 - Times-Microwave LMR240 Ultraflex (LMR240 type with OD=0.24")

Cable and Connector Selection Tips (3)

- Choose connector for specific cable
- Type N is superior to UHF connectors (PL-259, SO-239) for impedance precision/SWR, weatherproofing
- Connector standardization can be helpful (keep connector stock)
 - I like to standardize on type N for most cables if possible
 - I use adapters where necessary to convert to different connector types
- All connectors need weatherproofing if outside
 - Highly recommend using marine grade heat shrink tubing with internal adhesive/sealant nearly bulletproof!

Cable and Connector Selection Tips (4)

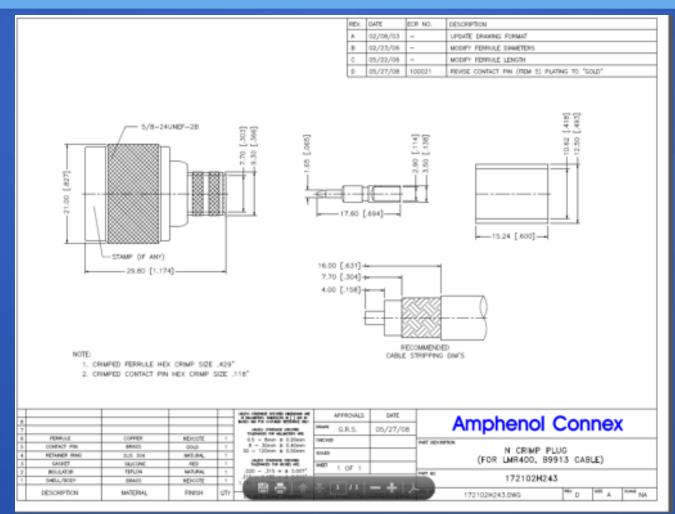
- Some good places I've found to buy connectors and cable
 - Antenna Farm (Online)
 - DX Engineering (Online)
 - HRO
 - RF Parts (Online, my favorite, excellent prices and stock)

Common RF Connector Assembly Types

- Full Solder (center conductor and shield)
- Full Crimp (center conductor and shield)
- Hybrid: Shield Crimp with Solder Center Conductor
- Clamp Type: Clamp Shield with Solder Center Conductor)
- Compression Connector provides crimping with waterproof seal (the state of the art in connectors)
 - Used extensively in the satellite and cable television industry for RG6 cables
 - Recent products emerging for Type N and other formats
 - Special tools required, connectors tend to be expensive

Crimp vs. Solder Connections?

- Long running controversy with staunch adherents on both sides
 - Solder people typically feel crimp can be susceptible to degraded electrical contact reliability with time
 - Crimp people point out the issue of repeated stresses/flexing causing metal fatigue in the solder joint; also have potential issue of dielectric melting
- ARRL states that good connections can be made using both techniques when done properly
- My opinion: Crimp can be superior to solder if done correctly with the RIGHT TOOLS – most problems with crimp are likely a result of insufficient crimping tool/die quality


Crimp Connection Properties

- Crimp connection: High pressure metal to metal contact resulting in a "cold weld" of metals which is also gas-tight
 - A proper crimp connection can have electrical conductance as good as solder
 - A proper crimp connection is mechanically strong/stable
 - Resistant to repeated stresses that can induce metal fatigue in a solder connection
 - Crimp connections are used commercially and industrially in countless applications with high reliability (Example: RG6 compression connectors and high current battery terminals)
 - Crimp connections have been the industry standard for auto, aeronautical, aerospace, and marine use for decades.
 - It is reported that Defense Dept. studies concluded they have 10 times lower failure rate than solder connections.

Crimp Connector Advantages/Disadvantage

- Key Advantages
 - Fast and easy assembly
 - Very repeatable connection quality with the right tools
 - Amenable to difficult assembly situations (like trees and towers)
 - Mechanically strong connections, particularly at the shield
- Key Disadvantages
 - It's critical to have a good set of crimpers and dies these are expensive (there's a lot of junk out there)
 - Connectors cannot be reused (once assembled)

Connector Documentation Example Amphenol 172102H243 Type N Connector (for LMR400)

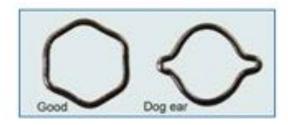
Crimping Basics (1) Flush and Straight!

PREFERRED

- 1. Equal compression on all 6 crimp surfaces
- 2. Crimp die positioned within pin step down

Defective Crimps

NONCONFORMING


- 1. Position of crimp die is outside crimp area
- 2. Body of pin is no longer concentric
- 3. Impedance of connector will be affected

NONCONFORMING

- 1. Pin has been distorted, is no longer straight
- Pin has begun to break at crimp Pin shows "dog ear" of excess material
- Possible cause: wrong crimp die or too much pressure applied

Crimping Basics (2) No Dog Ears!

FERRULE CROSS SECTION

- Good ferrule crimps into hexagon shape with equal pressure on all sides
- Reject "dog ear" causes unequal pressure and excess material forms "ears"
- Possible cause is wrong crimp die, too much pressure applied or ferrule material too hard

Crimping Basics (3) Shield Crimp Bell Allows Flexibility

PREFERRED

- 1. Crimp die positioned at front of ferrule, near connector
- 2. Equal pressure from crimp die on all sides
- 3. "Bell" at rear of ferrule allows cable flexibility

Useful Cable Prep Tools Precision Cutters

Xcelite 170M Precision Shield Trim

Channellock 911 Clean + Square whole cable cut

Useful Cable Prep Tools Cable Strippers

Cable Devil Stripper and Deburrer

Cablematic Deburring Tool

RF Industries
RFA-4087
Adjustable
Multiblade
Auto Stripper
(SUPERFAST and
ABSOLUTELY
INCREDIBLE!)

Useful Cable Prep Tools Crimpers and Dies

DX Engineering Standard Crimper Good for center conductors and small diameter shields

RF Industries RFA-4009-20 **Heavy Duty** Piston Crimper (HIGH QUALITY DIES AND CRIMPER **ESSENTIAL FOR GOOD CRIMPS!)**

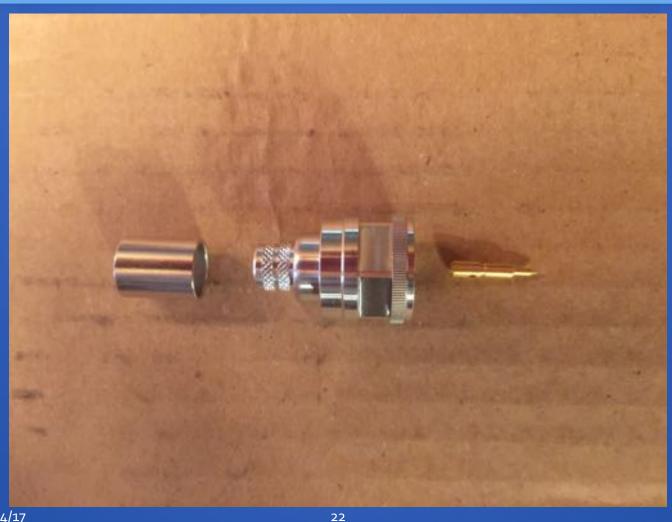
WØMJH, 6/24/17

Useful Cable Prep Tools Crimper and Die Kit

RF Industries
RFA-4009-200
Heavy Duty
Piston Crimper
And Die Kit

WØMJH, 6/24/17

Useful Cable Prep Item Marine Grade Heat Shrink Tubing with Internal Waterproof Adhesive (Up to 3:1 shrink ratio)


Ancor 1" Marine Grade

Ancor 3/4" Marine Grade

Useful Cable Prep Tools Heat Gun and Butane Torch for Heat Shrink

Amphenol 172102H243 Type N Connector Parts (for LMR400)

Type N Connector Assembly Sequence Step 1) Stripped to Spec and Ready for Assembly

Ferrule should be on cable now!

Type N Connector Assembly Sequence Step 2) Center Conductor Pin Inserted/Crimped

Type N Connector Assembly Sequence Step 3) Flare Shield Slightly (for Body Insertion)

Type N Connector Assembly Sequence Step 4) Body Insertion till CC Tip Flush with Right Body Edge

Type N Connector Assembly Sequence Step 5) Slide Ferrule over Shield and Crimp

Leave Bell at Cable End of Crimp for Flexibility and Strain Relief!

Type N Connector Assembly Sequence Step 6) 3/4" Heat Shrink in Place

Type N Connector Assembly Sequence Step 7) Heat Shrink Shrunk! (apply heat uniformly)

You're done when tube is uniformly shrunk down and adhesive oozes out of both ends to forms watertight seal

Conclusions/Summary

- Crimp Technology is Well Accepted in Industry and Government as the Most Reliable Electrical Connection Method for Challenging Environmental Conditions (repeated thermal expansion/contraction and vibration)
- High Quality Dies and Crimper are Absolutely Essential for Good Crimps - the larger the cable, the more critical this is.
- OHIO! Only handle it once: Use marine grade adhesive lined heat shrink for maximum waterproofing
- Consider standardizing on a few cable types and connectors for efficiency and simplicity (Type N connector generically useful)
- Questions? Feel free to contact Mike at acoustiman@comcast.net

References

- 1. ARRL Antenna Book, 22nd Edition, ARRL, 2011, ISBN 978-0-87259-694-8
- 2. RF Industries White Paper, Crimp vs. Solder: Pros and Cons, http://www.rfcoaxconnectors.com/Technical_CrimpvsSolder.htm